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bstract—A new type ridged-waveguide field-displacement isolator is
alyzed in this paper. Experimental results have been obtained for the
olation, insert loss, and voltage standing wave ratio (VSWR) irC- and
X-band. The isolation and bandwidth are found to increase obviously.

V. CONCLUSION Index Terms—isolator, ridged waveguide.

The exact and explicit expressions for the co- and cross-line
reflection and transmission coefficients for two coupled identical |. INTRODUCTION
exponential lines have been derived. The explicit expressions hav
been validated by a numerical solution based on the wave-splitti
technique.

fn 1960, Chen [1] proposed the experimental results of resonating
[Blator and field displacement isolator in a single ridged waveguide.
He got useful results of the resonating isolator. As to the field
displacement isolator, his experiments were failures. He found “the
forward loss of the field displacement isolator in single ridged wave-
[1] R. N. Ghose, “Exponential transmission lines as resonators a@dlide became nearly identical with the reverse loss, nonreciprocal
transformers,”IRE Trans. Microwave Theory Techupl. MTT-5, pp.  effect was not distinct. Take out the resistance sheet, nonreciprocality
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transcendental equation of the field displacement isolator in ridged
waveguide as following:

J(A+ B/Z)(tg® + Etgl — vtghtg®)

1 I
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Fig. 1. Measured operation of new type field displacement isolator in ridged
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waveguide and old type isolator in rectangular wavegid€'iband. — B(1+v7)tybtg® /¢ + B(1+ vtgd) =0 1)
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Fig. 2. Measured operation of new type field displacement isolator in ridged
waveguide and old type isolator in rectangular waveguid& Hvand. Lo — W_z 4+ T2
. — 02 Eflle
that isolation and the bandwidth of the new type device have been, — ”—25 412
improved. ¢z
jkT
V= —
II. EXPERIMENTAL RESULTS ”k"; )
. . Ea 1 k
For the sake of the study, the authors use the ridged waveguide to ¢ = A a
replace the rectangular one, and do some experiments as following. 1{”]‘ r
In C-band, the length of the ferrite bar is 118.5 mm, the experimental 7 — —=¢
results are shown in Fig. 1, where it can be seen that: 1) when the ~ “/H0
isolation L— is 30 dB, the bandwidth of the new type device is Y = j2bwCa

14.73%, while that of the old type devise is 9.7%; 2) the maximum C
isolation of the new type device 5~ 8 dB larger than that of the

the light speed
see [8], references herein

old type devise; and 3) the forward loss- of the new type device is

slightly larger than that of the old type devise.iband, the length

of the ferrite bar is 37.5 mm, with the experimental results shown in Calculation parameters are given in the experimental results. The
Fig. 2. One can see that the isolation of the new type device is largesquency range is from 8.0 to 11.0 GHz. The theoretical results are
than that of the old type devise. The experimental results have atdtmwn in the plots of Fig. 4, where it can be seen that the isolation
shown that the forward loss of the new type device is larger slighttf the new type device is about 3 dB larger than that of the old type
than that of the old type devise. one, which is roughly consistent with the experimental results shown
is Fig. 2. The calculation has also shown that the isolation of the new
type device reach its maximum valueat = 2.5 mm, which agree
C\gjth the experimental results shown in Fig. 2.

Since the ferrite and dielectric slabs loaded into the field displa
ment isolator are not “full height,” it would be very difficult to get a
closed form solution. In order to verify the isolation increase of the
new type device, the authors draw in the analytical model [7] shownIn this paper, how to improve the isolation and bandwidth of
in Fig. 3, and use the transverse matrix method [3] to deduce tthe field displacement isolator in rectangular waveguide has been

T HEORETICAL CONSIDERATION

IV. CONCLUSION
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r An Accurately Scaled Small-Signal Model for
?266?)\‘\\ Interdigitated Power P-HEMT up to 50 GHz
. I / . . . . .
=265 New type isolator Shen-Whan Chen, Olaleye Aina, Weiqi Li, Lee Phelps, and Tim Lee
% 25.0|
5245 .
° F Abstract—n this paper, the authors report an approach for construct-
£24.0] ing scalable small-signal models for interdigitated power pseudomorphic
%235 0ld type isolator high-electron-mobility transistors (P-HEMT'’s). By using cold-FET and
= N B </ Yang—Long measurement, as well as direct extraction procedures, scaling
z3.01 ~ rules for extrinsic components were established that allow accurate mod-
225] \\\ els over a broad frequency range. These models have been used to design
. ~ ultrawide-band monolithic microwave integrated circuits (MMIC's) up
2.0 Vot to 50 GHz.
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Frequency(GHZ)

. . . I. INTRODUCTION
Fig. 4. Calculated reverse loss with frequency for new type isolator and old

type isolator inX -band. Small-signal equivalent models are used frequently in the design
of power amplifier (PA), low-noise amplifier (LNA), and other
subsystem components. A small-signal model which provides good
considered. The propagation constant transcendental equation f@siracy and can be scaled based on layout structures, as well as
been deduced. By using appropriate ridged waveguide insteadggtewidth, is useful when various FET sizes are needed or models
rectangular one, it is possible to increase the isolation and bandwigﬂé simply not available. Unlike the small-signal model that is
of the field displacement isolator, thus making it easier to get a gogdtermined by computer optimization, a physically related one can be
match. However, the forward insert loss of the new type device igefyl in the characterization of fabrication processes and for scaling
slightly larger than that of the old type devise, and how to reduggposes. In addition to providing an equivalent circuit to predict
the forward loss is of further work. The authors believe that thigvic electrical performance, a scalable modeling approach is also
paper has resulted in a sufficient amount of knowledge regarding thesful in determining the noise parameters [1]-[2]. In this paper, an
device and provides a quantitative guide to the design of microwaygproach to constructing a scalable small-signal model from cold-
devices. FET, Yang-Long measurement, and RF data for an interdigitated
power pseudomorphic high-electron-mobility transistor (P-HEMT) is
REFERENCES presented. Approaches for selecting the parameters from data sets are
discussed. The scaling factors for extrinsic componefis Rq, R,
[1] T. S. Chen, “Nonreciprocal attenuation of ferrite in single ridge wavef ,, L,, L, C,., andC,,q) are given after careful examination of the

%“;de’lggg Trans. Microwave Theory Teclvol. MTT-48, pp. 247-248, measured data. The-parameter comparison between scaled models
Yy .

[2] W. Junding, “Analysis of transverse magnetization phase shifter of cro@gd measured data are shown up to 50 GHz.
waveguide,” inNat. Interchange Conf. Magnetic Material, Device Tech.

Guanxian, Sichuan, China, Oct. 1977, pp. 1-8. 1. PoweRr P-HEMT DeVICE STRUCTURE AND EQUIVALENT CIRCUIT
[8] —, “Experimental studies of latching ferrite phase shifter of back . .
ridged waveguide, Acta. Electron. Sin.no. 3, pp. 44-51, Sept. 1979. The pseudomorphic InGaAs/AlGaAs HEMT device structure was

[4] W. Junding, Y. Z. Xiong, M. J. Shi, G. F. Cheng, and M. D. zZu,used in this paper. The device profile is a double-heterojunction
“Analysis of twin ferrite toroidal phase shifter in grooved waveguide'HEMT grown by molecular beam epitaxy (MBE). Silicon planar
IEEE Trans. Microwave Theory Teclvol. 42, pp. 616-621, Apr. 1994. q5ing js employed on both heterojunctions to provide carriers to
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Feb. 1944. Fig. 1 shows the chosen equivalent circuit topology for the in-
terdigitated power P-HEMT. The P-HEMT layout in wafer process
control monitored (PCM) sites is shown in Fig. 2. Thgarameters
of five different FET’s, 10Q:m (25 x 4, two gate feeds), 198m (33
x 6, three gate feeds), 3Qam (30 x 10, five gate feeds), 396m
(33 x 12, six gate feeds), and 6@0n (50 x 12, six gate feeds) are
measured and their small-signal models are extracted with methods
discussed below.
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